MATH 3060 Tutorial 4

Chan Ki Fung

October 19, 2021

1 Some problems with Homework 2 and 3

- Showing $f'(0)$ does not exist is not equivalent to showing $\lim_{x\to 0} f'(x)$ does not exist.
- $\mathbb{Q}^{\infty} = \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \cdots$ is not countable. The set $\mathbb{Q}[x]$ is in bijection with $\cup_{k=1}^{\infty} \mathbb{Q}^k$ is countable (regarding \mathbb{Q}^k as an infinite sequence with only the first k terms can be nonzero), which is countable.
- Holder's inequality is true only for $0 < p, q < 1$.
- You need to verify $\sup(f+g) \leq \sup f + \sup g$.

2 Questions for last tutorial

- 1. True or false
	- (a) If f is integrable on [0, 1], then f^2 is integrable on [0, 1]. Ans: True.
	- (b) If f^2 is integrable on [0, 1], then f is integrable on [0, 1]. Ans: False, consider f to be the function $f(x) = 1$ when x rational and $f(x) = -1$ when x irrational.
	- (c) If f^2 is integrable on [0, 1], then |f| is integrable on [0, 1]. Ans: True.
	- (d) If f is non-negative and continuous on $(0, 1]$, and $\int_0^1 f$ exists as an improper integral, then $\int_0^1 f^2$ exists as an improper integral. Ans: False, consider the function $f(x) = x^{-1/2}$.
	- (e) If f is non-negative and continuous on $(0, 1]$, and $\int_0^1 f^2$ exists as an improper integral, then $\int_0^1 f$ exists as an improper integral. Ans: True.
- 2. Let f be a function on $(-\pi, \pi]$, which is integrable on $[a, \pi]$ for any $a \in (-\pi, \pi]$, and that $\lim_{c \to -\pi} \int_{c}^{\pi} f$ exists, show that Riemann Lebesgue lemma holds.

Ans: For any ϵ , we can find $c > -\pi$ so that $\int_{-\pi}^{c} |f| < \epsilon$. Consider the function f' which is equal to f on $(c, \pi]$, and 0 on $\left[-\pi, c\right]$. By the usual Riemann Lebesgue lemma, $c_n(f') \to 0$, but we have $|c_n(f) - c_n(f')| < \epsilon/2\pi$.

- 3. If f is uniformly Lipschitz and 2π periodic, show that $c_n(f) = O(1/n)$. Discussed in tutorial.
- 4. Show that

$$
-\log|2\sin\frac{x}{2}| \sim \sum_{n=1}^{\infty}\frac{\cos x}{n}
$$

Hints: $\int_0^{\pi} \log \sin \frac{x}{2} = -\frac{\pi}{2} \log 2$.

Ans: It is an even function, so $b_n = 0 \forall n$. a_0 can be calculated using the hint. For $n \geq 1$,

$$
\pi a_n = -\int_{-\pi}^{\pi} \log(2\sin(x/2)) \cos nx dx
$$

\n
$$
= -\frac{1}{n} \sin(nx) \log(2\sin(x/2)) \Big|_{-\pi}^{\pi} + \frac{1}{n} \int_{-\pi}^{\pi} \frac{\sin(nx) \cos(x/2)}{2\sin(x/2)} dx
$$

\n
$$
= \frac{1}{n} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})x + \sin(n - \frac{1}{2})x}{4\sin(x/2)} dx
$$

\n
$$
= \frac{\pi}{2n} \int_{-\pi}^{\pi} D_n(x) + D_{n-1}(x) dx
$$

\n
$$
= \frac{\pi}{n}
$$

3 Questions of this tutorial

- 1. True or False:
	- (a) If $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function defined by $d(x, y) = 0$ if $x = y$ and $d(x, y) = |x| + |y|$, then d is a metric.
	- (b) $d(f, g) = \int_0^1 |f g|^2$ is a metric on $C([0, 1]).$
	- (c) $d(f,g) = (\int_0^1 |f g|^{1/2})^2$ is a metric on $C([0, 1]).$
	- (d) (Bolzano-Weierstrass?) Consider $X = C([-\pi, \pi])$ with the L^2 metric. Any bounded sequence of functions in X (i.e. the norms of the functions are bounded by a common constant) has a Cauchy subsequence.
	- (e) $(1-1=0?)$ Let E be a subset of a metric space X, then $X\setminus (X\setminus E)$ = $E^o.$ $(E'^{-'}=E^o).$
	- (f) Let (X, d) be a metric space. Every closed subset of X is an intersection of open subsets of X.
	- (g) Let (X, d) be a metric space. Every open subset of X is a union of closed subsets of X.
- (h) Let (X, d) be a metric space, and $p \in X$. Then the closure of $\{x' \in$ $X: d(x', x) < 1$ in X is $\{x' \in X : d(x', x) \le 1\}.$
- (i) Let (X, d) be a metric space. We say a subset E of X is dense if $\overline{E} = X$. If two continuous functions $f, g: X \to \mathbb{R}$ agree on a dense subset of X, then $f = g$.
- (j) There is a metric on \mathbb{R} , so that every subset of $\mathbb{R}\setminus\{0\}$ is open, but $\{0\}$ is not open.
- (k) Let (X, d) be a metric space, and suppose $X = \cup U_i$ with each U_i open. Then a function $f: X \to \mathbb{R}$ is continuous if and only if $f|_{U_i}$ is continuous for each i.
- (l) Let (X, d) be a metric space, and suppose $X = \bigcup F_i$ with each F_i closed. Then a function $f: X \to \mathbb{R}$ is continuous if and only if $f|_{F_i}$ is continuous for each i.
- 2. Let p be a prime number, consider the following function $N_p : \mathbb{Q} \to \mathbb{R}$. Each nonzero rational number x can be written in the form

$$
x=p^n\frac{a}{b}
$$

with n an integer, and a, b are integers not divisible by p. We define $N_p(x) = p^{-n}$, and also define $N_p(0) = 0$.

Show that $d(x, y) = N_p(x-y)$ is a metric on Q. Is the sequence $1, p, p^2, p^3, \ldots$ convergent?

- 3. Let A be an $n \times n$ matrix. We say A is symmetric if $A^T = A$. We say A is disconnected if we can find a subset I of $\{1, 2, \ldots, n\}$ such that $A_{ij} = 0$ whenever $i \in I, j \in J$. We also say that A is disconnected if A is connected.
	- (a) If A is connected, show that for any $i, j \in \{1, 2, ..., n\}$ there is some non negative integer k so that the (i, j) entry of A^k is nonzero. (By convention, $A^0 = I$).
	- (b) Assume A is symmetric and connected. For $i, j \in \{1, 2, \ldots, n\}$, define $d(i, j)$ to be the minimal non negative integer k so that the (i, j) entry of A^k is nonzero. Show that d is a metric.